Refine Your Search

Topic

Search Results

Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices

2020-01-20
HISTORICAL
J3105_202001
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer, primarily for vehicles using a conductive ACD connection capable of transferring DC power. It defines conductive power transfer methods, including the infrastructure electrical contact interface, the vehicle connection interface, the electrical characteristics of the DC supply, and the communication system. It also covers the functional and dimensional requirements for the vehicle connection interface and supply equipment interface. There are also sub-documents which are identified by a SAE J3105/1, SAE J3105/2, and SAE J3105/3. These will be specific requirements for a specific interface defined in the sub-document. SAE J3105: Main document, including most requirements. ○ SAE J3105/1: Infrastructure-Mounted Cross Rail Connection ○ SAE J3105/2: Vehicle-Mounted Pantograph Connection ○ SAE J3105/3: Enclosed Pin and Socket Connection
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices

2024-04-23
WIP
J3105
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer, primarily for vehicles using a conductive ACD connection capable of transferring DC power. It defines conductive power transfer methods, including the infrastructure electrical contact interface, the vehicle connection interface, the electrical characteristics of the DC supply, and the communication system. It also covers the functional and dimensional requirements for the vehicle connection interface and supply equipment interface. New editions of the documents shall be backwards compatible with the older editions. There are also sub-documents which are identified by a SAE J3105/1, SAE J3105/2, and SAE J3105/3. These will be specific requirements for a specific interface defined in the sub-document.
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices

2023-05-05
CURRENT
J3105_202305
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer, primarily for vehicles using a conductive ACD connection capable of transferring DC power. It defines conductive power transfer methods, including the infrastructure electrical contact interface, the vehicle connection interface, the electrical characteristics of the DC supply, and the communication system. It also covers the functional and dimensional requirements for the vehicle connection interface and supply equipment interface. New editions of the documents shall be backwards compatible with the older editions. There are also sub-documents which are identified by a SAE J3105/1, SAE J3105/2, and SAE J3105/3. These will be specific requirements for a specific interface defined in the sub-document.
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices Enclosed Pin and Socket Connection

2020-01-20
CURRENT
J3105/3_202001
This document details one of the connections of the SAE J3105 document. The connections are referenced in the scope of the main document SAE J3105. SAE J3105/3 details the enclosed pin and sleeve connection. All the common requirements are defined in the main document; the current document provides the details of the connection. This document covers the main safety and interoperability relevant requirements for an electric vehicle power transfer system using a conductive automated charging device based on an enclosed pin and socket design. To allow interoperability for on-road vehicles (in particular, buses and coaches), one configuration is described in this document. Other configurations may be used for non-standard applications (for example, mining trucks or port vehicles).
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices Infrastructure-Mounted Pantograph (Cross-Rail) Connection

2020-01-20
HISTORICAL
J3105/1_202001
This document details one of the connections of the SAE J3105 document. The connections are referenced in the scope of the main document SAE J3105. SAE J3105/1 details the infrastructure-mounted pantograph, or cross-rail connection. All the common requirements are defined in the main document; the current document provides the details of the connection. This document covers the connection interface relevant requirements for an electric vehicle power transfer system using a conductive ACD based on a cross-rail design. To allow interoperability for on-road vehicles (in particular, buses and coaches), one configuration is described in this document. Other configurations may be used for non-standard applications (for example, mining trucks or port vehicles).
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices Infrastructure-Mounted Pantograph (Cross-Rail) Connection

2023-05-05
CURRENT
J3105/1_202305
This document details one of the connections of the SAE J3105 document. The connections are referenced in the scope of the main document SAE J3105. SAE J3105/1 details the infrastructure-mounted pantograph, or cross-rail connection. All the common requirements are defined in the main document; the current document provides the details of the connection. This document covers the connection interface relevant requirements for an electric vehicle power transfer system using a conductive automated connection device (ACD) based on a cross-rail design. To allow interoperability for on-road vehicles (in particular, buses and coaches), one configuration is described in this document. Other configurations may be used for non-standard applications (for example, mining trucks or port vehicles).
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices Vehicle-Mounted Pantograph (Bus-Up)

2020-01-20
HISTORICAL
J3105/2_202001
This document details one of the connections of the SAE J3105 document. The connections are referenced in the scope of the main document SAE J3105. SAE J3105/2 details the vehicle-mounted pantograph, or the bus-up connection. All the common requirements are defined in the main document; the current document provides the details of the connection. This document covers the connection interface relevant requirements for an electric vehicle power transfer system using a conductive automated charging device based on a conventional rail vehicle pantograph design. To allow interoperability for on-road vehicles (in particular, buses and coaches), one configuration is described in this document. Other configurations may be used for non-standard applications (for example, mining trucks or port vehicles).
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices Vehicle-Mounted Pantograph (Bus-Up)

2023-05-05
CURRENT
J3105/2_202305
This document details one of the connections of the SAE J3105 document. The connections are referenced in the scope of the main document SAE J3105. SAE J3105/2 details the vehicle-mounted pantograph, or the bus-up connection. All the common requirements are defined in the main document; the current document provides the details of the connection. This document covers the connection interface relevant requirements for an electric vehicle power transfer system using a conductive automated charging device based on a conventional rail vehicle pantograph design. To allow interoperability for on-road vehicles (in particular, buses and coaches), one configuration is described in this document. Other configurations may be used for non-standard applications (for example, mining trucks or port vehicles).
Standard

Electric Vehicle Terminology

2000-06-02
HISTORICAL
J1715_200006
This SAE Information Report contains definitions for electric vehicle terminology. It is intended that this document be a resource for those writing other electric vehicle documents, specifications, standards, or recommended practices. Hybrid electric vehicle terminology will be covered in future revisions of this document or as a separate document.
Standard

Energy Transfer System for Electric Vehicles - Part 1: Functional Requirements and System Architectures

2014-02-26
CURRENT
J2293/1_201402
SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1. The different physical ETS system architectures are identified by the form of the energy that is transferred between the EV and the EVSE, as shown in Figure 2. It is possible for an EV and EVSE to support more than one architecture.
Standard

Energy Transfer System for Electric Vehicles - Part 2: Communication Requirements and Network Architecture

2014-02-26
CURRENT
J2293/2_201402
SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1. The different physical ETS system architectures are identified by the form of the energy that is transferred between the EV and the EVSE, as shown in Figure 2. It is possible for an EV and EVSE to support more than one architecture.
Standard

Energy Transfer System for Electric Vehicles—Part 1: Functional Requirements and System Architectures

2008-07-07
HISTORICAL
J2293/1_200807
SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1. The different physical ETS system architectures are identified by the form of the energy that is transferred between the EV and the EVSE, as shown in Figure 2. It is possible for an EV and EVSE to support more than one architecture.
Standard

Energy Transfer System for Electric Vehicles—Part 2: Communication Requirements and Network Architecture

1997-06-01
HISTORICAL
J2293/2_199706
SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1. The different physical ETS system architectures are identified by the form of the energy that is transferred between the EV and the EVSE, as shown in Figure 2. It is possible for an EV and EVSE to support more than one architecture.
Standard

Energy Transfer System for Electric Vehicles—Part 2: Communication Requirements and Network Architecture

2008-07-08
HISTORICAL
J2293/2_200807
SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1. The different physical ETS system architectures are identified by the form of the energy that is transferred between the EV and the EVSE, as shown in Figure 2. It is possible for an EV and EVSE to support more than one architecture.
Standard

GUIDELINES FOR ELECTRIC VEHICLE SAFETY

1998-06-01
HISTORICAL
J2344_199806
This SAE Information Report identifies and defines the preferred technical guidelines relating to safety for Electric Vehicles (EVs) during normal operation and charging. Guidelines in this document do not necessarily address maintenance, repair, or assembly safety issues.
Standard

Guidelines for Electric Vehicle Safety

2020-10-13
CURRENT
J2344_202010
This SAE Information Report identifies and defines the preferred technical guidelines relating to safety for vehicles that contain High Voltage (HV), such as Electric Vehicles (EV), Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV), Fuel Cell Vehicles (FCV) and Plug-In Fuel Cell Vehicles (PFCV) during normal operation and charging, as applicable. Guidelines in this document do not necessarily address maintenance, repair, or assembly safety issues.
Standard

Guidelines for Electric Vehicle Safety

2010-03-05
HISTORICAL
J2344_201003
This SAE Information Report identifies and defines the preferred technical guidelines relating to safety for vehicles that contain High Voltage (HV), such as Electric Vehicles (EV), Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV), Fuel Cell Vehicles (FCV) and Plug-In Fuel Cell Vehicles (PFCV) during normal operation and charging, as applicable. Guidelines in this document do not necessarily address maintenance, repair, or assembly safety issues.
Standard

Hybrid Electric Vehicle (HEV) & Electric Vehicle (EV) Terminology

2008-02-01
HISTORICAL
J1715_200802
This SAE Information Report contains definitions for HEV and EV terminology. It is intended that this document be a resource for those writing other HEV and EV documents, specifications, standards, or recommended practices.
Standard

Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Terminology

2022-09-30
CURRENT
J1715_202209
This SAE Information Report contains definitions for HEV, PHEV, and EV terminology. It is intended that this document be a resource for those writing other HEV, PHEV, and EV documents, specifications, standards, or recommended practices.
X